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Abstract. An introduction to recent advances in computing effective superpotentials of four dimensional
N = 1 SUSY gauge theories coupled to matter is presented. The correspondence with matrix models and
two proofs of this are discussed and a novel derivation of the Veneziano-Yankielowicz superpotential for a
pure gauge theory is given using the generalized Konishi anomaly. Based on a talk given at the School on
Sub-Nuclear Physics, Erice, Sicily, September 2003.

1 Introduction

This work provides a brief introduction to recent advances
in the study of four-dimensional gauge theories with the
minimal amount (that is N = 1) of supersymmetry. We
consider general theories of this type, with arbitrary gauge
group coupled to matter in an arbitrary representation,
and with an arbitrary superpotential for the matter. The
aim is to compute the effective superpotential for the
gauge superfields obtained by integrating out the matter.
Minimising this effective superpotential then yields the
quantum vacua of the theory. In doing so, one discovers
two remarkable things. The first remarkable thing is that
the ‘integrating out’ part, which involves evaluating Feyn-
man diagrams in superspace, reduces to the computation
of planar diagrams in a matrix model. That is, the entire
dependence on (super)space ‘disappears’ !1 The second re-
markable thing is that, having done the perturbative com-
putation in this way to n loops, one finds (upon minimis-
ing the effective superpotential) that one has calculated
the n-instanton correction to the vacuum structure. Thus,
a perturbative computation leads to non-perturbative in-
formation about the physics!

Before we see how all of this comes about, let us make
a rather simple, but nonetheless important remark about
symmetries in physics in general. In any physical system,
the presence of a symmetry (an invariance of the system)
places a constraint on the possible dynamics of the sys-
tem, and thus results in a simplification: in a sense, one
of the reasons why we are so obsessed with symmetries in
theoretical physics is because they simplify things. Ideally,
one would like to consider systems with no symmetry at

1 The disappearance is not a straightforward dimensional
reduction however. If it were, the arguments presented here
would hold in arbitrary dimensions; in fact they are specifi-
cally four-dimensional.

all. The set of such systems contains all more symmetric
systems as a subset and so general statements made about
less symmetric theories hold for all more symmetric theo-
ries. Unfortunately making such statements can be rather
difficult.

Supersymmetries in gauge quantum field theories are
no different. One can make general statements about
gauge theories with no supersymmetry (for example the
renormalisation group) and such statements are very pow-
erful. What if we require our theory to have the minimal
amount (N = 1) of SUSY? Can we make even stronger
general statements? Supersymmetry places rather strong
constraints on a theory and we shall see (as we have
claimed above) that it is possible to make stronger state-
ments in this case. Moreover, because the statements ap-
ply to arbitrary N = 1 theories, they apply equally to the
subset of all theories with extended (N > 1) SUSY, and
it is interesting to see how results obtained previously in
such theories (e.g. Seiberg-Witten duality in N = 2 [1]
and corollaries of Olive-Montonen duality in N = 4 [2])
can be reproduced in the framework presented here [3].

We stress that although the methods apply to general
minimally supersymmetric four-dimensional gauge theo-
ries, they do not tell us everything about such theories. A
complete specification of the theory is given by the effec-
tive action; here one is only able to calculate the so-called
F -terms (the effective superpotential) in the effective ac-
tion. The Kähler, or D-terms (which lack the strong con-
straint of holomorphy) are not determined.

In the next section, we sketch two proofs [4, 5] of
the gauge theory/matrix model correspondence (conjec-
tured in [3]) and show how the superpotentials are calcu-
lated in each case. We then show that there are matter-
independent (i.e. pure gauge) contributions to the effec-
tive superpotential which are undetermined. These con-
tributions turn out to be non-perturbative and provide
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the bridge between the perturbative computation and the
non-perturbative physics mentioned above. In Sect. 3 we
show that these contributions can in fact be determined
in this framework [6], and we do this.

2 The gauge theory/matrix model
correspondence

We employ N = 1 superspace notations (see e.g. [7]). The
gauge fields (and their superpartners) are written as com-
ponents of a real vector superfield V ; by acting with su-
perspace covariant derivatives, one can form the analogue
of the gauge field strength, Wα ∼ D̄2e−V DαeV and the
gauge-invariant glueball chiral superfield S ∼ trWαWα.
The matter is represented by chiral superfields Φ with
a tree-level matter superpotential in the action which is
polynomial in the matter superfields2

∫
d4xd2θWtree =

∫
d4xd2θgkΦk. (1)

Here, the coefficients gk are called the tree-level mat-
ter couplings. We consider integrating out the matter Φ
in some background glueball field S to obtain an effec-
tive superpotential Weff , which depends on S, the gk,
and the gauge coupling (which we write in terms of the
dimensionally-transmuted scale Λ).

It was claimed in the introduction that the perturba-
tive computation of Weff reduces to the evaluation of pla-
nar diagrams in a bosonic matrix model, and one might
well ask how this can be demonstrated. Two proofs have
appeared. The first [4] simply considers the contributing
Feynman diagrams in superspace and shows that the mo-
mentum dependence of the bosons and their fermion su-
perpartners cancels in all such diagrams. The only things
left to consider are insertions of S, factors of gk coming
from the vertices, and numerical symmetry factors. One
can show that these can be obtained from planar diagrams
of the matrix model

exp
F (S)
g2

s

=
∫

dφ exp
Wtree(φ)

gs
, (2)

where φ are N ′ × N ′ bosonic matrices and S = gsN
′.

The restriction to planar diagrams is enforced by taking
the ’t Hooft limit: N ′ � 1 and gs � 1, with S fixed.
The action of the matrix model is given by the tree-level
matter superpotential Wtree with the matter superfields Φ
replaced by bosonic matrices φ.

To compute the perturbative computation to Weff ob-
tained by integrating out the matter (e.g. for gauge group

2 Only polynomials of degree three or less are renormalizable.
However, since we claim that the computation of the effective
superpotential reduces to a matrix model, the results must
be independent of the momenta and any momentum cutoff.
The results are thus independent of the UV completion of the
theory and one is free to consider ‘non-renormalizable’ tree-
level superpotentials.

SU(N)), one evaluates

N
∂F (S)

∂S
, (3)

where F (S) is the perturbative free energy of the matrix
model in the planar limit.

The second proof [5] is rather different. One consid-
ers the effect of general chiral changes of variables δΦ =
εf(Φ, Wα) in the path integral. These lead to anomalous
Ward identities generalizing the Konishi anomaly [8, 9].
For example, the variation δΦ = εΦ′(Φ) yields

〈
Φ′ ∂Wtree

∂Φ
− S

∂Φ′

∂Φ

〉
= 0. (4)

From the general chiral change of variables specified by
f , one obtains a complete set of anomalous Ward iden-
tities for the chiral matter fields, and one can show that
these are in one-to-one correspondence with the complete
set of Ward identities in the matrix model (which, since
the matrix model partition function (2) is just an inte-
gral, correspond to integration by parts identities). This
establishes the correspondence between the SUSY gauge
theory and the bosonic matrix model.

Having established the correspondence, one can go on
and calculate the effective superpotential for any given
theory. To do this, one needs to solve the complete set
of Ward identities to obtain the expectation values 〈Φk〉
appearing in the tree-level matter superpotential in terms
of the background glueball superfield S and the couplings
gk. The effective superpotential can then be determined
from the partial differential equations

∂Weff

∂gk
= 〈Φk〉, (5)

which follow from standard supersymmetry and holomor-
phy arguments.

We note that these partial differential equations only
specify the effective superpotential up to a term which is
independent of the matter couplings gk, but which may de-
pend on both S and the gauge coupling scale Λ. This term
must contain any contribution to the effective superpoten-
tial coming from the pure gauge theory without matter. So
let us ask the question: is there a pure gauge theory con-
tribution? It turns out that there is, as was shown many
years ago by Veneziano and Yankielowicz [10, 11] using
the U(1)R symmetry of the pure gauge theory. For the
gauge group SU(N), for example, the pure gauge theory
superpotential is

Weff(S, Λ) = N

(
−S log

S

Λ3 + S

)
. (6)

Such terms are non-perturbative. One way to see this is to
minimise Weff with respect to S. This reproduces the vac-
uum condensate SN = Λ3N , due to (non-perturbative) in-
stantons [12]. In the next section, we show how such terms
can be derived using the generalized Konishi anomaly
in the presence of matter discussed above [6]. This then
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renders the above approach self-contained, as well as
providing an independent derivation of the Veneziano-
Yankielowicz terms.

Before doing so, one might ask where the missing terms
are hidden in the perturbative approach using Feynman
diagrams. One might assume that they correspond to di-
agrams with gauge superfields in the loops; this is not re-
ally correct, since the missing terms are non-perturbative
and thus cannot show up in any diagram. Intriguingly,
these terms can be generated by the measure of the ma-
trix model (i.e. the volume of the gauge group) [13, 3],
though it is not at all clear why.

3 Pure gauge terms

In order to derive the pure gauge theory contributions, we
determine the effective superpotential in the case where
the matter sector consists of F flavours of ‘quarks’ trans-
forming in the fundamental representation of the gauge
group, which we take to be SU(N) (though the argument
can be applied to any classical Lie group). Furthermore,
we choose a tree-level superpotential in which the quarks
can have either zero or non-zero classical expectation val-
ues at the minima. If a quark has a non-zero vev, then
since the quarks transform non-trivially under the gauge
group, the gauge group must be spontaneously broken via
the Higgs mechanism. By putting each of the F quarks
at zero or non-zero minima, we can engineer the gauge
symmetry breaking such that the unbroken gauge group
is anything from SU(N) down to SU(N − F ). We then
solve the Konishi anomaly Ward identities (4) and the re-
sulting partial differential equations (5), determining the
effective superpotential in each vacuum, up to a constant
term (by ‘constant’ we mean ‘independent of the tree-level
matter couplings’).

The tree-level matter couplings are free parameters in
the theory. We vary them such that both the quark masses
and the Higgs vevs (which determine the masses of the
massive gauge bosons) become large. In that limit, the
massive matter decouples from the unbroken low energy
gauge group, and the effective superpotential contains a
sum of contributions from the decoupled matter and the
low energy gauge group. Once we have identified the con-
tribution of the massive matter and discarded it, we are
left with the superpotential of the low energy gauge group.
This includes the constant term.

Now any two distinct vacua have different unbroken
gauge groups, but the same constant term. If we sub-
tract the two superpotentials (with the massive matter
discarded), the constant cancels and we are left with a
difference equation for the pure gauge theory superpoten-
tial. The solution to this difference equation yields pre-
cisely the Veneziano-Yankielowicz terms (6). To determine
the constant term in any theory, one then demands that
Weff(S, gk, Λ) reproduces the correct decoupled contribu-
tions of the unbroken gauge group and massive matter
in any vacuum in the massive limit [14]. Incidentally, the
fact that the matching in one vacuum correctly reproduces
the superpotential in all vacua justifies a posteriori the

assumption that the constant term is the same for each
vacuum branch.

Having explained the argument, let us now carry it out.
Since quarks are Dirac fermions and chiral supermultiplets
contain Weyl fermions, we represent F flavours of quarks
by F chiral superfields Qi transforming in the fundamental
representation of SU(N) and a further F chiral superfields
Q̃j transforming in the anti-fundamental representation.
The tree-level matter superpotential is written in terms of
the gauge invariant mesons M j

i = QiQ̃
j as

Wtree = mtrM − λtrM2. (7)

The classical vacua are then

mM j
i − 2λMk

i M j
k = 0, (8)

with F− eigenvalues at M i
i = 0 and F+ = F −F− eigenval-

ues at M i
i = m/2λ. If M i

i has a non-zero vev, then so have
Qi and Q̃i, and the gauge symmetry is broken. The low
energy gauge group is thus broken down to SU(N − F+).
The quantum theory has the Konishi anomaly and the
classical vacua are modified to (4)

m〈M j
i 〉 − 2λ〈Mk

i M j
k〉 = δj

i S, (9)

with F± eigenvalues at

〈M i
i 〉 =

m

4λ

(
1 ±

√
1 − 8λS

m2

)
. (10)

The partial differential equations following from holomor-
phy and supersymmetry are [5]

∂Weff

∂m
= 〈trM〉,

∂Weff

∂λ
= −〈trM2〉. (11)

We shall not write here the expression for the effective
superpotential Weff which is obtained by integrating these
equations (it is rather cumbersome). Taking the limit of
Weff in which the quark mass m and Higgs vev

√
m/2λ

become large and subtracting the superpotentials for the
vacua in which the number of Higgsed quarks is F1,2, one
obtains

Weff,1 − Weff,2 →

(F1 − F2)
m2

4λ
+ (F1 − F2)

[
S log

S

m2/2λ
− S

]
. (12)

The first term represents the decoupled matter: it is given
(according to the non-renormalization theorem) by the
classical expectation value of Wtree. The second term must
therefore represent the contribution of the low energy pure
gauge group SU(N − F1,2).3 It seems peculiar that what

3 There is a subtlety here: the glueball superfield S includes
the massive gauge bosons, which should be integrated out by
replacing them with their vevs. However, in the decoupled
limit, the massive gauge bosons have zero vevs, so the field S
is equivalent to the glueball superfield of the low energy gauge
group once the massive gauge bosons have been integrated out.
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we have identified as the superpotential of the low energy
gauge group contains the matter couplings m and λ. How-
ever, these are precisely the factors needed to convert the
SU(N) gauge coupling scale Λ to the SU(N −F1,2) scales
Λ1,2 via the scale-matching relation

Λ
3(N−F1)
1

(
m2

2λ

)F1

= Λ3N−F mF = Λ
3(N−F2)
2

(
m2

2λ

)F2

.

(13)

This relation comes from requiring that the coupling con-
stants of the high energy theory (with dynamic matter)
and the low energy theory (with matter integrated out)
match at the Higgs and quark mass scales (see e.g. [15]).
Replacing the matter couplings by the appropriate gauge
coupling scales in this way (and discarding the massive
matter) leads to the difference equation

Weff,1 − Weff,2 =

(N − F1)
(
−S log S

Λ3
1

+ S
)

− (N − F2)
(
−S log S

Λ3
2

+ S
)
,

(14)

with solution

Weff(S, Λ) = N

(
−S log

S

Λ3 + S

)
+ f(S). (15)

Here, f(S) is an arbitrary function of S alone; it is inde-
pendent of all other parameters. On dimensional grounds,
f(S) ∝ S and one sees that the ambiguity in f (which can
be re-written as a pure number multiplying Λ3N ) corre-
sponds to the freedom to choose a renormalisation group
scheme [15].

4 Discussion

The methods summarised above provide a very powerful
framework in which to study gauge theories with N = 1
SUSY, and it is certainly of interest to go on and study
the vacuum structure and phases of specific models.

More general extensions to this work include the ques-
tion of whether similar results hold in dimensions other
than four [16], the extension to supergravity (rather than
supergauge) backgrounds [3,17,18,19,20] and whether dy-
namical breaking of supersymmetry may be studied in this
framework.
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